Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38657226

RESUMEN

Graphite anode suffers from great capacity loss and larger cell polarization under low-temperature conditions in lithium-ion batteries (LIBs), which are mainly caused by the high energy barrier for the Li+ desolvation process and sluggish Li+ transfer rate across the solid electrolyte interface (SEI). Regulating an electrolyte with an anion-dominated solvation structure could synchronously stabilize the interface and boost the reaction kinetics of the graphite anode. Herein, a highly ionic conductive electrolyte consisting of a fully methylated cyclic ether solvent of 2,2,4,4,5,5-hexamethyl-1,3-dioxolane (HMD) and fluoroethylene carbonate (FEC) cosolvent was designed. The high electron-donating effect and steric hindrance of -(CH3)2 in HMD endow the HMD-based electrolyte with high ionic conductivity but lower coordination numbers with Li+, and an anion-dominated solvation structure was formed. Such configuration can accelerate the desolvation process and induce the forming of a LiF-rich SEI film on the anode, avoiding the solvent coembedding into graphite and enhancing the ion migration rate under low temperatures. The assembled Li||graphite cell with the tame electrolyte outperformed the conventional carbonates-based cell, showing 93.8% capacity retention after 227 cycles for the DF-based cell compared to 64.7% after 150 cycles. It also exhibited a prolonged cycle life for 200 rounds with 81% capacity retention under -20 °C. Therefore, this work offers a valuable thought for solvent design and provides approaches to electrolyte design for low-temperature LIBs.

2.
Colloids Surf B Biointerfaces ; 238: 113915, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631281

RESUMEN

Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.


Asunto(s)
Antiinflamatorios , Vendajes , Hidrogeles , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Humanos , Sulfatos/química , Sulfatos/farmacología , Adhesivos/química , Adhesivos/farmacología , Movimiento Celular/efectos de los fármacos , Masculino
3.
Mol Plant Pathol ; 25(4): e13457, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619873

RESUMEN

Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple (Malus domestica) quality and yield. In this study, we found that the transcription factor MdWRKY71 was significantly induced by C. fructicola infection in the GLS-susceptible apple cultivar Royal Gala. The overexpression of MdWRKY71 in apple leaves resulted in increased susceptibility to C. fructicola, whereas RNA interference of MdWRKY71 in leaves showed the opposite phenotypes. These findings suggest that MdWRKY71 functions as a susceptibility factor for the apple-C. fructicola interaction. Furthermore, MdWRKY71 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (DLO1) and promoted its expression, resulting in a reduced SA level. The sensitivity of 35S:MdWRKY71 leaves to C. fructicola can be effectively alleviated by knocking down MdDLO1 expression, confirming the critical role of MdWRKY71-mediated SA degradation via regulating MdDLO1 expression in GLS susceptibility. In summary, we identified a GLS susceptibility factor, MdWRKY71, that targets the apple SA degradation pathway to promote fungal infection.


Asunto(s)
Fabaceae , Malus , Phyllachorales , Malus/genética , Fenotipo , Ácido Salicílico
4.
Artículo en Inglés | MEDLINE | ID: mdl-38683719

RESUMEN

To overcome the challenges posed by the complex structure and large parameter requirements of existing classification models, the authors propose an improved extreme learning machine (ELM) classifier for human locomotion intent recognition in this study, resulting in enhanced classification accuracy. The structure of the ELM algorithm is enhanced using the logistic regression (LR) algorithm, significantly reducing the number of hidden layer nodes. Hence, this algorithm can be adopted for real-time human locomotion intent recognition on portable devices with only 234 parameters to store. Additionally, a hybrid grey wolf optimization and slime mould algorithm (GWO-SMA) is proposed to optimize the hidden layer bias of the improved ELM classifier. Numerical results demonstrate that the proposed model successfully recognizes nine daily motion modes including low-, mid-, and fast-speed level ground walking, ramp ascent/descent, sit/stand, and stair ascent/descent. Specifically, it achieves 96.75% accuracy with 5-fold cross-validation while maintaining a real-time prediction time of only 2 ms. These promising findings highlight the potential of onboard real-time recognition of continuous locomotion modes based on our model for the high-level control of powered knee prostheses.


Asunto(s)
Algoritmos , Amputados , Intención , Prótesis de la Rodilla , Aprendizaje Automático , Humanos , Amputados/rehabilitación , Masculino , Modelos Logísticos , Locomoción/fisiología , Caminata , Fémur , Reconocimiento de Normas Patrones Automatizadas/métodos , Adulto
5.
Discov Oncol ; 14(1): 225, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063927

RESUMEN

OBJECTIVE: To investigate the effect of COVID-19 infection on pancreatic cancer. METHODS: Based on the mRNA-Seq data of COVID-19 patients and pancreatic cancer (PC) patients in the GEO database, we used a support vector machine (SVM), LASSO-Cox regression analysis and random forest tree (RF) to screen the common signature genes of the two diseases and further investigate their effects and functional characteristics on PC, respectively. The above procedures were performed in R software. RESULTS: The proteins COL10A1/FAP/FN1 were found to be common signature genes for COVID-19 and PC, were significantly up-regulated in both diseases and showed good diagnostic efficacy for PC. The risk model based on COL10A1/FAP/FN1 showed good PC risk prediction ability and clinical application potential. Tumor typing based on COL10A1/FAP/FN1 expression levels effectively classified PC into different subtypes and showed significant differences between the two subtypes in terms of survival prognosis, immune levels, immune checkpoint expression levels, mutation status of common tumor mutation sites, and drug sensitivity analysis. While pathway analysis also revealed that FN1 as an extracellular matrix component may be involved in the biological process of PC by regulating the PI3K-AKT signaling axis. CONCLUSION: The upregulated expression of COL10A1/FAP/FN1, the characteristic genes of COVID-19, are potential diagnostic targets for PC, and the upregulated expression of FN1 may promote the progression of PC by activating the PI3K-AKT signaling pathway. The COL10A1/FAP/FN1-based typing provides a new typing approach for PC, and also provides a good reference and idea for the refinement of PC treatment and subsequent clinical research.

6.
Sci Rep ; 13(1): 22243, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097666

RESUMEN

Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase, plays a crucial role as a key enzyme in the final step of glycolysis. It is involved in regulating the tumor microenvironment and accelerating tumor progression. However, the relationship between PKM2 expression and the prognosis and immune infiltration remains unclear in lung cancer. In this study, we analyzed PKM2 expression in pan-cancer, and investigated its association with prognosis and immune cell infiltration of lung cancer by using multiple online databases, including Gent2, Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), PrognoScan, Kaplan-Meier plotter, and The Human Protein Atlas (HPA). The results showed that PKM2 expression is elevated in tumor tissues compared with the adjacent normal tissues of most cancers, including lung cancer. Prognostic analysis indicated that high expression of PKM2 was associated with poorer prognosis in overall lung cancer patients, especially in lung adenocarcinoma (LUAD). Notably, PKM2 exhibited a strong correlation with B cells and CD4+ T cells in LUAD; and with B cells, CD8+ T cells, CD4+ cells, and macrophages in lung squamous cell carcinoma (LUSC). Furthermore, PKM2 expression displayed a significant negative correlation with the expression of immune cell markers in both LUAD and LUSC. These findings suggested that PKM2 could serve as a promising prognostic biomarker for lung cancer and provided insights into its essential role in modulating the immune cell infiltration.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Pronóstico , Piruvato Quinasa/genética , Microambiente Tumoral/genética
7.
ACS Biomater Sci Eng ; 9(12): 6891-6901, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38013423

RESUMEN

With the fast development of soft electronics, underwater adhesion has become a highly desired feature for various sensing uses. Currently, most adhesive hydrogels are based on catechol-based structures, such as polydopamine, pyrogallol, and tannic acid, with very limited structural variety. Herein, a new type of glycopolymer-based underwater adhesive hydrogel has been prepared straightforwardly by random copolymerization of acrylic acid, acetyl-protected/unprotected glucose, and methacrylic anhydride in dimethyl sulfoxide (DMSO). By employing a DMSO-water solvent exchange strategy, the underwater adhesion was skillfully induced by the synergetic effects of hydrophobic aggregation and hydrogen bonding, leading to excellent adhesion behaviors on various surfaces, including pig skins, glasses, plastics, and metals, even after 5 days of storage in water. In addition, the underwater adhesive hydrogels with simple and low-cost protected/unprotected carbohydrate compositions showed good mechanical and rheological properties, together with cytocompatibility and antiswelling behavior in water, all of which are beneficial for underwater adhesions. In application as a flexible strain sensor, the adhesive hydrogel exhibited stable and reliable sensing ability for monitoring human motion in real time, suggesting great potential for intelligent equipment design.


Asunto(s)
Anhídridos , Dimetilsulfóxido , Humanos , Animales , Porcinos , Hidrogeles , Agua
8.
Front Oncol ; 13: 1176141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746288

RESUMEN

Objectives: The potential role of shear wave elastography (SWE) and superb microvascular imaging (SMI) for early assessment of treatment response to neoadjuvant chemotherapy (NAC) in breast cancer remains unexplored. This study aimed to identify potential factors associated with the pathological response to NAC using these advanced ultrasound techniques. Methods: Between August 2021 and October 2022, 68 patients with breast cancer undergoing NAC were recruited. Patients underwent conventional ultrasonography, SMI, and SWE examinations at baseline and post-2nd cycle of NAC. Maximum tumor diameter (Dmax), maximum elastic value (Emax), peak systolic velocity (PSV), and resistance index (RI) at baseline and the rate of change of these parameters post-2nd cycle were recorded. After chemotherapy, all patients underwent surgery. Using the Miller-Payne's grade, patients were categorized into response (grades 3, 4, or 5) and non-response (grades 1 or 2) group. Parameters were compared using t-tests at baseline and post-2nd cycle. Binary logistic regression analysis was used to identify variables and their odds ratios (ORs) related to responses and a prediction model was established. ROC curves were drawn to analyze the efficacy of each parameter and their combined model for early NAC response prediction. Results: Among the 68 patients, 15(22.06%) were categorized into the non-response group, whereas 53(77.94%) were categorized into the response group. At baseline, no significant differences were observed between the two groups (p>0.05). Post-2nd cycle of NAC, rates of change of Emax, PSV and RI (ΔEmax, ΔPSV and ΔRI) were higher in responders than non-responders (p<0.05). Binary logistic regression analysis revealed that ΔEmax (OR 0.797 95% CI, 0.683-0.929), ΔPSV (OR 0.926, 95%CI, 0.860-0.998), and ΔRI (OR 0.841, 95%CI, 0.736-0.960) were independently associated with the pathological response of breast cancer after NAC. The combined prediction model exhibited higher accuracy in the early evaluation of the response to NAC (AUC 0.945, 95%CI, 0.873-1.000). Conclusion: SWE and SMI techniques enable early identification of tumor characteristics associated with the pathological response to NAC and may be potentially indicative of an effective response. These factors may eventually be used for the early assessment of NAC treatment for clinical management.

9.
Int J Biol Macromol ; 253(Pt 4): 126975, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37739278

RESUMEN

Glycosaminoglycans (GAGs) are naturally existing extracellular components with a variety important biological functions. However, their heterogeneous chemical compositions and the challenges in purification have become the main disadvantages for clinical applications. Thus, various synthetic glycopolymers have been designed to mimic the structures and functions of natural GAGs. In the current study, glycopolymers from structurally simple glucose or N-acetylglucosamine monomers were synthesized, which were further subjected to sulfation of different degrees and grafting onto silica nanoparticles, leading to spherical-shaped nano-structures of uniform diameters. With the successively strengthened multivalent effect, the obtained glycopolymer nanoparticles not only showed excellent effects on promotion of cell proliferation by stabilizing growth factors, but also significantly inhibited tumor metastasis by weakening the adhesion between tumor cells and activated platelets. Among the prepared nanoparticles, S3-PGNAc@Si with N-acetylglucosamine segment and the highest sulfation degree exhibited the strongest bioactivities, which were even close to those of heparin. This work presents a novel approach for structural and functional mimicking of natural GAGs from simple and low-cost monosaccharides, holding great potential for a range of biomedical applications.


Asunto(s)
Glicosaminoglicanos , Nanopartículas , Glicosaminoglicanos/farmacología , Glicosaminoglicanos/química , Acetilglucosamina , Heparina/farmacología , Proliferación Celular , Nanopartículas/química
10.
Ann Hum Genet ; 87(5): 241-247, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461830

RESUMEN

BACKGROUND: The protein encoded by the cartilage oligomeric matrix protein (COMP) gene is a noncollagenous extracellular matrix (ECM) protein that is important for chondrocyte formation and growth. Variations in the COMP gene cause pseudoachondroplasia (PSACH), which is mainly characterized by short-limbed dwarfing in the clinic. AIMS: To characterize the function of a rare pathogenic variant in the COMP gene (c.875G > A, p.Cys292Tyr). MATERIALS & METHODS: We performed 3D structural analysis, in vitro expression analysis, and immunofluorescence to characterize the effects of the variant on protein structure, expression, and cellular localization respectively. RESULTS: Variation modeling showed that the interactions between amino acids were changed after the variation, and there were 31 changes in the secondary structure of mutant COMP (MT-COMP). Western blot showed that the intracellular quantity of MT-COMP was higher than the wild-type COMP (WT-COMP). Cellular immunofluorescence results showed that WT-COMP was less abundant and homogenously distributed in cells, while the MT-COMP accumulated in the cytoplasm. DISCUSSION: Herein, we report a variant of COMP in a Chinese family with PSACH. We have shown that the rare missense variant, COMP c.875G > A, previously reported in ClinVar and identified in our patient, results in excessive accumulation of mutant protein in the cytoplasm, and is therefore pathogenic. CONCLUSION: Through in silico and experimental analyses, we provide evidence that COMP c.875G > A is the likely cause of PSACH in a Chinese family.


Asunto(s)
Acondroplasia , Humanos , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patología , Proteína de la Matriz Oligomérica del Cartílago/genética , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Mutación
11.
BMC Bioinformatics ; 24(1): 222, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259059

RESUMEN

OBJECTIVE: To explore dermatomyositis signature genes as potential biomarkers of hepatocellular carcinoma and their associated molecular regulatory mechanisms. METHODS: Based on the mRNA-Seq data of dermatomyositis and hepatocellular carcinoma in public databases, five dermatomyositis signature genes were screened by LASSO regression analysis and support vector machine (SVM) algorithm, and their biological functions in dermatomyositis with hepatocellular carcinoma were investigated, and a nomogram risk prediction model for hepatocellular carcinoma was constructed and its predictive efficiency was initially evaluated. The immune profile in hepatocellular carcinoma was examined based on the CIBERSORT and ssGSEA algorithms, and the correlation between five dermatomyositis signature genes and tumor immune cell infiltration and immune checkpoints in hepatocellular carcinoma was investigated. RESULTS: The expression levels of five dermatomyositis signature genes were significantly altered in hepatocellular carcinoma and showed good diagnostic efficacy for hepatocellular carcinoma, suggesting that they may be potential predictive targets for hepatocellular carcinoma, and the risk prediction model based on five dermatomyositis signature genes showed good risk prediction efficacy for hepatocellular carcinoma and has good potential for clinical application. In addition, we also found that the upregulation of SPP1 expression may activate the PI3K/ART signaling pathway through integrin-mediated activation, which in turn regulates the development and progression of hepatocellular carcinoma. CONCLUSION: LY6E, IFITM1, GADD45A, MT1M, and SPP1 are potential predictive targets for new-onset hepatocellular carcinoma in patients with dermatomyositis, and the upregulation of SPP1 expression may activate the PI3K/ART signaling pathway through the mediation of integrins to promote the development and progression of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Dermatomiositis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Dermatomiositis/complicaciones , Dermatomiositis/genética , Neoplasias Hepáticas/genética , Algoritmos , Fosfatidilinositol 3-Quinasas
12.
ACS Appl Mater Interfaces ; 14(42): 47461-47471, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36240467

RESUMEN

As extracellular matrix (ECM) mimetic materials, hydrogels have been widely used for broad biomedical applications. However, with so many physical or chemical cues in the matrix that regulate cell behaviors or functions, it remains challenging to design a customizable hydrogel with the desired properties on demand. In the current study, we aim to establish a circular-patterned hydrogel model with gradient stiffness for screening the most favorable ECM environment for specific cells or certain application purposes. First, six types of hydrogels with a wide stiffness range of 1.2-28.9 kPa were prepared by dynamic covalent cross-linking between gelatin derivatives and oxidized hyaluronic acid. Taking advantage of their instantaneous self-healing property from dynamic chemistry, the hydrogels were further spliced into one whole piece of circular-patterned hydrogel. When rabbit bone marrow mesenchymal stem cells were seeded in the center, the influences of matrix stiffness on the regulation of stem cell adhesion, migration, and differentiation were directly observed and compared under one visual field. In addition, these hydrogels all possessed good biocompatibility, degradability, and injectability, showing great potential for tissue-engineering-related applications.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Animales , Conejos , Hidrogeles/farmacología , Hidrogeles/química , Nicho de Células Madre , Gelatina , Ingeniería de Tejidos
13.
Genes Genomics ; 44(5): 551-559, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35099763

RESUMEN

BACKGROUND: NPHS2 is the causative gene of nephrotic syndrome type 2 (MIM 600995) which often clinically manifests as steroid-resistant nephrotic syndrome (SRNS). The NPHS2 gene encodes a slit diaphragm (SD) associated protein podocin. OBJECTIVE: This study reported a novel disease-causing mutation of NPHS2 in a Chinese family with SRNS. We also investigated the pathogenic mechanism of the variants in this family. METHOD: A Chinese family with SRNS was recruited. Whole exome sequencing was performed to screen for disease-causing mutation. Sanger sequencing was used to confirm the results. In vitro functional experiments including immunoblotting, co-immunoprecipitation and double immunofluorescence staining were performed to explore the pathogenic mechanisms of mutations. RESULTS: In this family, compound heterozygous mutations of NPHS2 (c.467dupT and c.865A > G) were identified and segregated with the disease. The maternal c.865A > G was a novel variant, leading to amino acid substitution (p.K289E). In vitro functional assays indicated that c.467dupT (p.L156FfsX11) mutant lost interaction with nephrin. Both K289E and L156FfsX11 mutants showed sharply diminished plasma membrane localization. Furthermore, abnormal distribution of podocin mutants also altered the cell membrane localization of nephrin. CONCLUSION: We reported a family with SRNS caused by compound heterozygous mutations of NPHS2 (c.467dupT and c.865A > G). c.865A > G (p.K289E) in NPHS2 was a novel causative variant associated with SRNS. Both variants in this family not only affected the normal cell membrane localization of podocin, but also altered the cell membrane localization of nephrin which is the major architectural protein of SD.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Síndrome Nefrótico , China , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Mutación , Síndrome Nefrótico/genética , Esteroides
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(1): 52-55, 2022 Jan 10.
Artículo en Chino | MEDLINE | ID: mdl-34964967

RESUMEN

OBJECTIVE: To explore the genetic basis for a Chinese patient with retinitis pigmentosa (RP). METHODS: Whole exome sequencing (WES) was carried out to screen potential variant in the proband. Candidate variants were determined by taking consideration of clinical phenotype. Sanger sequencing was used to verify the variant in the proband and his parents. RESULTS: The proband was found to harbor compound heterozygous variants of c.8G>A (p.Cys3Tyr) and c.958_959insA (p.Arg320Glnfs*29) in the C2ORF71 gene, which has derived from his father and mother, respectively. Both variants were unreported previously. Based on the ACMG guidelines, they were predicted to be likely pathogenic and pathogenic, respectively. CONCLUSION: The novel compound heterozygous variants of the C2ORF71 gene probably underlay the pathogenesis of RP in the proband. Above finding has enriched the spectrum of C2ORF71 gene mutations and facilitated genetic counseling for the family.


Asunto(s)
Retinitis Pigmentosa , Pueblo Asiatico/genética , China , Humanos , Mutación , Linaje , Retinitis Pigmentosa/genética , Secuenciación del Exoma
15.
Mol Genet Genomic Med ; 9(10): e1795, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34535971

RESUMEN

BACKGROUND: Cone dystrophy with supernormal rod response (CDSRR) is an autosomal recessive retinal disorder characterized by myopia, dyschromatopsia, nyctalopia, photophobia, and nystagmus. CDSRR is caused by mutations in KCNV2, the gene encoding for an electrically silent Kv subunit (Kvs) named Kv8.2. METHODS: A Chinese CDSRR family was recruited. Complete ophthalmology clinical examinations were performed to clarify the phenotype. Genetic examination was underwent using whole exome sequencing (WES). In addition, a candidate gene was validated by Sanger sequencing. Expression analysis in vitro including immunoblotting, quantitative real-time PCR (qRT-PCR), and co-immunoprecipitation experiments was performed to investigate the pathogenic mechanism of the identified gene variants. RESULTS: WES identified two KCNV2 heterozygous mutations from the proband. Sanger sequencing validated that the patient's parents had, respectively, carried those two mutations. Further in vitro functional experiments indicated that the mutated alleles had led the Kv8.2 proteins to fail in expressing and interacting with the Kv2.1 protein, respectively. CONCLUSIONS: This study expanded the KCNV2 mutation spectrum. It can also be deduced that CDSRR has a broad heterogeneity. It is further confirmed that the inability expression of Kv8.2 proteins and the failure of Kv8.2 proteins to interact with Kv2.1 may have accounted for the etiology of CDSRR based on previous studies and this study.


Asunto(s)
Distrofia del Cono/diagnóstico , Distrofia del Cono/genética , Heterocigoto , Mutación , Canales de Potasio con Entrada de Voltaje/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Adulto , China , Análisis Mutacional de ADN , Familia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Masculino , Imagen Óptica , Linaje , Fenotipo , Tomografía de Coherencia Óptica , Pruebas de Visión , Secuenciación del Exoma
16.
Cancer Res ; 81(9): 2457-2469, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33574085

RESUMEN

A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. SIGNIFICANCE: This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Tolerancia Inmunológica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/inmunología , Animales , Apoptosis/genética , Neoplasias Encefálicas , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Femenino , Glioblastoma , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Células THP-1 , Factores de Transcripción/genética , Transfección , Transgenes , Carga Tumoral/genética , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Death Differ ; 28(6): 1941-1954, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33469229

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and cause of death from cancer in China. Previous studies showed that autophagy and apoptosis inhibition are critical for the survival of ESCC cells. However, the underlying mechanisms remain to be clarified. Recently, we found that PIWIL2, a novel cancer testis protein, is highly expressed in ESCC and associated with high T-stage and poor 5-year survival rate in patients. Our further study showed that PIWIL2 can directly bind to IKK and promote its phosphorylation, leading to phosphorylation of IκB and subsequently nuclear translocation of NF-κB for apoptosis inhibition. Meanwhile, PIWIL2 competitively inhibits binding of IKK to TSC1, and thus deactivate mTORC1 pathway which suppresses ULK1 phosphorylation and initiation of autophagy. The mouse xenograft model suggested that PIWIL2 can promote ESCC growth in an IKK-dependent manner. This present work firstly revealed that PIWIL2 can play a role in regulating autophagy and apoptosis, and is associated with poor prognosis in ESCC patients, providing novel insights into the roles of PIWIL2 in tumorigenesis.


Asunto(s)
Proteínas Argonautas/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Animales , Apoptosis , Autofagia , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Transfección
18.
J Assist Reprod Genet ; 37(9): 2159-2170, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32638265

RESUMEN

PURPOSE: Primary ciliary dyskinesia (PCD), which commonly causes male infertility, is an inherited autosomal recessive disorder. This study aimed to investigate the clinical manifestations and screen mutations associated with the dynein axonemal assembly factor 2 (DNAAF2) gene in a Han Chinese family with PCD. METHODS: A three-generation family with PCD was recruited in this study. Eight family members underwent comprehensive medical examinations. Genomic DNA was extracted from the participants' peripheral blood, and targeted next-generation sequencing technology was used to perform the mutation screening. The DNAAF2 expression was analyzed by immunostaining and Western blot. RESULTS: The proband exhibited the typical clinical features of PCD. Spermatozoa from the proband showed complete immotility but relatively high viability. Two novel compound heterozygous mutations in the DNAAF2 gene, c.C156A [p.Y52X] and c.C26A [p.S9X], were identified. Both nonsense mutations were detected in the proband, whereas the other unaffected family members carried either none or only one of the two mutations. The two nonsense heterozygous mutations were not detected in the 600 ethnically matched normal controls or in the Genome Aggregation Database. The defect of the DNAAF2 and the outer dynein arms and inner dynein arms were notably observed in the spermatozoa from the proband by immunostaining. CONCLUSION: This study identified two novel compound heterozygous mutations of DNAAF2 leading to male infertility as a result of PCD in a Han Chinese family. The findings may enhance the understanding of the pathogenesis of PCD and improve reproductive genetic counseling in China.


Asunto(s)
Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Infertilidad Masculina/genética , Proteínas Asociadas a Microtúbulos/genética , Adulto , Pueblo Asiatico/genética , Axonema/genética , Axonema/patología , China , Cilios/patología , Trastornos de la Motilidad Ciliar/patología , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Infertilidad Masculina/patología , Masculino , Mutación/genética , Linaje , Fenotipo
19.
Genes Genomics ; 42(9): 1067-1074, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32725577

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disorder with no effective treatment, which underscores the importance of avoiding the birth of children with DMD by identifying pathogenic mutations and obtaining an accurate prenatal diagnosis. OBJECTIVE: The objective of this study was to analyze the genetic defect of a Chinese family where all male patients have died of DMD. METHODS: Multiplex ligation dependent probe analysis (MLPA) and next-generation sequencing (NGS) were employed to detect DMD mutations. The candidate mutations were then validated by Sanger sequencing. In vitro splicing assay was further conducted to examine the potential effect of the novel DMD splice site mutation on splicing. RESULTS: We found that two rare DMD mutations c.1318G>A and c.6438+2T>G passed from generation to generation among female carriers and they may be used as genetic markers in the Chinese DMD family. In vitro splicing assay further revealed that the novel classical splice site mutation c.6438+2T>G gave rise to a new donor splice site, which resulted in a frame shift of the transcripts and a premature termination at position 2159 in exon 45 (p.Y2144Nfs*16). CONCLUSION: We found that two co-inherited mutations passed from generation to generation in female carriers and they may be used as genetic markers in the Chinese DMD family. Our findings not only expanded the DMD mutation spectrum, but also provided an important basis for identifying of female carriers and avoiding the birth of affected male children in this DMD family.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Adulto , Anciano , Pueblo Asiatico/genética , China , Distrofina/metabolismo , Exones/genética , Familia , Femenino , Marcadores Genéticos/genética , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Distrofia Muscular de Duchenne/metabolismo , Mutación/genética , Linaje
20.
Biochem Biophys Res Commun ; 516(3): 819-824, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31262447

RESUMEN

PIWIL2 belongs to the PIWI protein subfamily and is widely expressed in a variety of tumors. Previous studies have shown that PIWIL2 has the characteristics of oncogene. Recently we reported that PIWIL2 suppresses GSK3ß activity to regulate circadian rhythms through SRC-PI3K-AKT pathway. As GSK3ß is a key part of the ß-catenin destruction complex, it plays a vital role in regulating the degradation of ß-catenin. Besides, the activated ß-catenin/CyclinD1 pathway is involved in the proliferation of tumor cells. It is intriguing to investigate whether PIWIL2 regulates ß-catenin and downstream pathway. In this study, we found that PIWIL2 suppressed GSK3ß induced phosphorylation and ubiquitination of ß-catenin, and thus increased ß-catenin accumulation in the nucleus. By up-regulating ß-catenin and CyclinD1, PIWIL2 can promote cell cycle and proliferation in tumor cells. Taken together, our results revealed a novel function of PIWIL2 in regulating ß-catenin/CyclinD1 pathway in tumor cells, providing a new perspective for PIWIL2 as an oncogene.


Asunto(s)
Proteínas Argonautas/genética , Ciclo Celular/genética , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional , beta Catenina/genética , Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HeLa , Células Hep G2 , Humanos , Fosforilación , Estabilidad Proteica , Transducción de Señal , Ubiquitinación , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...